Effects of Obesity on Transcriptomic Changes and Cancer Hallmarks in Estrogen Receptor–Positive Breast Cancer

نویسندگان

  • Enrique Fuentes-Mattei
  • Guermarie Velazquez-Torres
  • Liem Phan
  • Fanmao Zhang
  • Ping-Chieh Chou
  • Ji-Hyun Shin
  • Hyun Ho Choi
  • Jiun-Sheng Chen
  • Ruiying Zhao
  • Jian Chen
  • Chris Gully
  • Colin Carlock
  • Yuan Qi
  • Ya Zhang
  • Yun Wu
  • Francisco J. Esteva
  • Yongde Luo
  • Wallace L. McKeehan
  • Joe Ensor
  • Gabriel N. Hortobagyi
  • Lajos Pusztai
  • W. Fraser Symmans
  • Mong-Hong Lee
  • Sai-Ching Jim Yeung
چکیده

BACKGROUND Obesity increases the risk of cancer death among postmenopausal women with estrogen receptor-positive (ER+) breast cancer, but the direct evidence for the mechanisms is lacking. The purpose of this study is to demonstrate direct evidence for the mechanisms mediating this epidemiologic phenomenon. METHODS We analyzed transcriptomic profiles of pretreatment biopsies from a prospective cohort of 137 ER+ breast cancer patients. We generated transgenic (MMTV-TGFα;A (y) /a) and orthotopic/syngeneic (A (y) /a) obese mouse models to investigate the effect of obesity on tumorigenesis and tumor progression and to determine biological mechanisms using whole-genome transcriptome microarrays and protein analyses. We used a coculture system to examine the impact of adipocytes/adipokines on breast cancer cell proliferation. All statistical tests were two-sided. RESULTS Functional transcriptomic analysis of patients revealed the association of obesity with 59 biological functional changes (P < .05) linked to cancer hallmarks. Gene enrichment analysis revealed enrichment of AKT-target genes (P = .04) and epithelial-mesenchymal transition genes (P = .03) in patients. Our obese mouse models demonstrated activation of the AKT/mTOR pathway in obesity-accelerated mammary tumor growth (3.7- to 7.0-fold; P < .001; n = 6-7 mice per group). Metformin or everolimus can suppress obesity-induced secretion of adipokines and breast tumor formation and growth (0.5-fold, P = .04; 0.3-fold, P < .001, respectively; n = 6-8 mice per group). The coculture model revealed that adipocyte-secreted adipokines (eg, TIMP-1) regulate adipocyte-induced breast cancer cell proliferation and invasion. Metformin suppress adipocyte-induced cell proliferation and adipocyte-secreted adipokines in vitro. CONCLUSIONS Adipokine secretion and AKT/mTOR activation play important roles in obesity-accelerated breast cancer aggressiveness in addition to hyperinsulinemia, estrogen signaling, and inflammation. Metformin and everolimus have potential for therapeutic interventions of ER+ breast cancer patients with obesity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relation between Estrogen and Progesterone Receptor Status with p53, Ki67 and Her-2 Markers in Patients with Breast Cancer

Background: Breast cancer is the most common cancer in women, containing approximately one third of all illnesses in women. Assessment of molecular markers is valuable in predicting the outcome of disease and decision making for optimal treatment. The purpose of this study was to determine the relationship between estrogen and progesterone receptors with Her-2, Ki67, P53, and clinicopathologica...

متن کامل

Leptin in Breast Cancer: Its Relationship with Insulin, Estrogens and Oxidative Stress

Breast cancer is the most common cancer in women. Several risk factors such as age, family history of breast cancer, marital status, early menarche and late menopause are related to breast cancer. Obesity is also a main health problem associated with breast cancer incidence and subsequent mortality. Association between obesity and expansion of breast cancer may be due to excessive sex steroid h...

متن کامل

Bioinformatics-Based Prediction of FUT8 as a Therapeutic Target in Estrogen Receptor-Positive Breast Cancer

Abstract Introduction: Estrogen receptor-positive (ER-positive) breast cancer is a subgroup of breast tumors that is more likely to respond to hormone therapy. ER-positive and ER- negative breast cancers tend to show different patterns of metastasis because of different signaling cascade and genes that are activated by estrogen response. Genetic factors can contribute to high rates of metastas...

متن کامل

The Inhibitory Effects of Ascorbic Acid, ?-Tocopherol, and Sodium Selenite on Proliferation of Breast Cancer Cell Lines

The role of antioxidants in prevention and treatment of cancers have been reported by several studies. In our investigation we studied the effects of ascorbic acid, ?-tocopherol, and sodium selenite on proliferation of two breast cancer cell lines: T47D (estrogen-receptor positive) and MDA-MB-231 (estrogen-receptor negative). We also used 17-?-estradiol as positive control for proliferation of ...

متن کامل

The Inhibitory Effects of Ascorbic Acid, ?-Tocopherol, and Sodium Selenite on Proliferation of Breast Cancer Cell Lines

The role of antioxidants in prevention and treatment of cancers have been reported by several studies. In our investigation we studied the effects of ascorbic acid, ?-tocopherol, and sodium selenite on proliferation of two breast cancer cell lines: T47D (estrogen-receptor positive) and MDA-MB-231 (estrogen-receptor negative). We also used 17-?-estradiol as positive control for proliferation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 106  شماره 

صفحات  -

تاریخ انتشار 2014